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Abstract

Modern society is faced with ever more complex problems, many of which can be formulated as generate-
and-test optimization problems. General-purpose optimization algorithms are not well suited for real-world
scenarios where many instances of the same problem class need to be repeatedly and efficiently solved, such
as routing vehicles over highways with constantly changing traffic flows, because they are not targeted to a
particular scenario. Hyper-heuristics automate the design of algorithms to create a custom algorithm for a
particular scenario.

Hyper-heuristics typically employ Genetic Programming (GP) and this project has investigated the rela-
tionship between the choice of GP and performance in Hyper-heuristics. Results are presented demonstrating
the existence of problems for which there is a statistically significant performance differential between the
use of different types of GP.

1 Introduction

Hyper-heuristics is a field of study which aims to be able to automatically create novel algorithms designed
to perform better on certain classes of problem than would a general algorithm modified by hand for that
purpose. Often this is done through the use of genetic programming techniques, which apply evolutionary
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algorithms to functions or algorithms in order to find algorithmic solutions to problems. Genetic program-
ming originated with representing the program structures as trees, and this has continued to be the most
common implementation of the technique to this day. However, the field has since grown and diversified to
the point where there are now many representations of program structure other than trees which have shown
success. As always, it is important to understand which implementation is best to pick when designing the
solution to a problem; this paper thus aims to quantify the differences in performance between five genetic
programming variants on the boolean satisfiability (SAT) problem: Tree, Linear, Cartesian, Grammatical,
and Stack genetic programming.

1.1 Genetic Programming

1.1.1 Tree GP

The original formulation of genetic programming was done with a tree representation. Here, each node
on the tree is a function which takes its children as inputs and sends its output to its parent. This is a
very intuitive way of thinking about the created programs, because each subtree is a complete sub-program.
However, there is no capacity for parts of the tree to be reused in a calculation, which can make some things
more difficult to do [1].

1.1.2 Linear GP

Linear genetic programming is inspired by a more direct handling of genetic programs as computer programs,
with each node being an instruction in a list that inputs from and outputs to registers that store program
state. This capacity to store and reuse data results in linear genetic programming having the potential to
create significantly more powerful programs, at the cost of increasing the search space and making it more
difficult for the algorithm to construct meaningful programs. The fact that some pieces of the program will
not have a meaningful effect on the output can be both helpful as spare genetic information or harmful in
its overcomplication of the code [1].

1.1.3 Cartesian GP

Related in the desire of reusing computations is Cartesian genetic programming, which can be thought of
as several rows of nodes which take their inputs from previous rows, ultimately forming a graph rather
than a tree. This allows for similar behavior to linear GP, including the capacity to store some unused
nodes. Cartesian GP has an explicitly defined size, which prevents bloat but also makes its performance
very sensitive to its parameters [1].

1.1.4 Grammatical GP

Grammatical genetic programming uses a genotype that, rather than directly representing a set of nodes,
represents a numbered list of grammatical expansions which eventually produce its nodes. This potentially
allows for a lot more control by the user over the search space, and also facilitates the use of multiple data
types in the algorithm. The genotype is represented linearly but can be decoded into a tree for execution [1].
In terms of what can be represented, unless restricted in its grammar this GP variant has the same search
space as with tree GP.

1.1.5 Stack GP

Stack genetic programming uses a linear list of instructions, but unlike with linear GP these instructions
simply pop inputs from and push their outputs to a data stack [2]. This effectively means that despite
representing its genotype similarly to the linear GP, the stack GP actually has the same search space as the
tree GP does.
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1.2 Boolean Satisfiability Problem

The boolean satisfiability problem, or SAT, is a common problem in the field of computer science. It is
popular as a test problem due to its simple implementation and high complexity, but is also notable due to
its property of NP-completeness, meaning that many other difficult problems can be quickly reduced to it.
The SAT problem is also particularly simple to represent for an evolutionary algorithm. For these reasons,
it has been chosen as the problem on which to compare these GP types.

The SAT problem is defined as such: Given a set of boolean variables, and a boolean function of those
variables, determine if there is a set of values that the variables can take on that will cause the function to
evaluate as true. Generally, determining so involves finding such a set of values for the variables. Thus in
many contexts the SAT problem is treated as simply finding those values if they exist.

A major sub-problem of SAT is called 3-SAT, which restricts the form of the boolean function to
conjunctive normal form with clauses of three variables: this results in the function taking the form
(x1 ∨ x2 ∨ x3) ∧ (x4 ∨ x5 ∨ x6) ∧ . . ., where xi’s can be reused or inverted. A SAT problem can be con-
verted to a 3-SAT problem in polynomial time, so solving the 3-SAT problem is effectively the same as
solving the SAT problem. For the purposes of this paper, the algorithms generated by the hyper-heuristics
will be solving the 3-SAT problem.

1.3 Related Work

The SAT problem is a well-studied problem in computer science, so many algorithms for searching for
solutions already exist. [3] gives a comparison of a number of local search algorithms designed for the SAT
problem, which continually improve proposed solutions using a fixed set of rules informed by understanding
of the problem. Research has also been performed on the use of evolutionary algorithms, which are instead
a type of black-box search algorithm that does not require detailed information about the problem [4]. The
use of hyper-heuristics for this problem is intended to be able to generate both types of algorithm, as well
as hybrid approaches between the two. Hyper-heuristic approaches to the SAT problem have been studied
before [5], but this paper is only using the SAT problem as an environment to study different forms of GP
hyper-heuristic, a subject for which there is very little existing research, rather than attempting to improve
on prior results.

2 Methodology

In order to determine any difference in performance between the selected genetic programming variants, each
of the five were implemented in a common framework which shares as much code as possible between them,
in order to minimize differences in performance due to implementation, rather than the actual quality of
the variant. Each variant produces a representation of a population individual which codes for an algorithm
that can be run against a SAT problem and return a fitness, as well as rules for how to randomly generate,
mutate, or recombine individuals of that representation type.

2.1 SAT Problem Generation

The problems against which the variants are evaluated, as well as a separate verification set, are generated
randomly by first creating a random set of boolean variable values, and then constructing clauses in the
generated problem such that the boolean values selected are a solution to the problem. This guarantees that
each problem is possible to solve.

2.2 Evaluating Individuals

Instead of requiring that an individual in the population represent an entire BBSA, it is assumed that the
algorithm will take the form of an iterative process which at each step inputs and outputs a set of proposed
solutions to a SAT problem. This reduces the amount of code that needs to be evolved to just the actions
to be performed during each step.
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In order to evaluate an individual, its code is run against each of a set of SAT problems several times,
in order to determine that individual’s general performance rather than its performance against a specific
problem. On each run, an initial population of SAT solutions is generated at random. The individual’s code
is then run with the initial population as an input, which outputs a new population. This process is then
repeated with each step taking the previous step’s output as an input. After the termination condition is
met, the fitness of the individual for that run is calculated as the number of clauses of the SAT problem which
are satisfied by the best solution in the most recent step of the run. The evaluated fitness of the individual
is the average fitness of all of its runs, minus a small factor of the amount of nodes used to function as a
parsimony pressure, in order to mitigate bloat.

2.3 Meta-Evolution

Individuals are evolved through a generic genetic programming algorithm which after each generation eval-
uates the fitnesses of the whole population by running them against several problems. The fitnesses of the
population are stored, as well as the fitness of the best individual of the generation tested against a larger
verification set of problems. The next generation’s population is then generated primarily by recombination
(with parents selected through tournament selection from the previous generation), with small minorities
generated by mutation (also selected by tournament selection) and by truncation selection from the previ-
ous generation to ensure that the best solutions survive to future generations. The methods of generating
the initial population and performing mutation and recombination are dependent on the variant of genetic
programming being tested.

2.4 Genetic Programming Nodes

Each variant of algorithm uses the same set of algorithm nodes which each take inputs and outputs of sets
of SAT solutions (except for terminal nodes which take no input). The nodes often take parameters as well,
but these are not treated as inputs for genetic programming in order to simplify the generated algorithms
and are instead randomly generated when the nodes are with values within a certain range. Each node is a
self-contained algorithm which has been taken from existing BBSAs. There are no nodes for evaluation of
solutions, instead they are evaluated when their fitnesses are first required. Solution fitness is determined
by the amount of clauses in the associated SAT problem which are satisfied by that solution. The selection
of nodes was based on work by [6].

2.4.1 Terminal Nodes

The population from the previous step in evaluation can be input as a terminal node. Alternatively, a new
randomly generated population of a given size can also be input as a terminal node.

2.4.2 Selection Nodes

Several options are given to select a subset of solutions from a population: tournament selection, fitness-
proportional selection, truncation selection, and random subset. These all have as a parameter the amount
of individuals to select. Tournament selection also has the size of tournament as a parameter. Truncation
selection does not necessarily sort the population beforehand; instead a separate sort node is given.

2.4.3 Mutation Nodes

A number of algorithms of varying complexity are given in order to allow an algorithm to modify solutions.
These are applied to each solution in the input population. A bitwise mutation operation is provided to
allow random changes to solutions at a given rate. There is also a pair of greedy mutation algorithms: one
checks all variables which could be flipped and flips the one which causes the highest positive increase to
solution fitness, if any, and the other simply flips a random variable which will increase fitness.

Also provided is a function which uses stepwise adaptation of weights to select which variable to change:
The solution stores a value for each clause in the problem representing how long that clause has been
unsatisfied. When the SAW mutation node is called, it selects the clause which has been unsatisfied for the
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longest time, and flips a random variable in it. Then the counters are incremented by one for each false
clause and reset to zero for each true clause [7]. An implementation of the related Novelty function [8], [3],
a result from studies of local search algorithms, is included as well.

2.4.4 Other Nodes

In addition to the aforementioned sorting node, which sorts the members of a population by number of
satisfied clauses, a set union node is also provided which will combine two population sets into one. This
allows for branching in the algorithms generated. After each step in evaluation of the algorithms, the
population size is automatically truncated if it exceeds a maximum size, in order to prevent slowdown
resulting from misuse of the union node.

2.5 Evolutionary Operators

Due to differences in the ways that the different genetic programming variants represent their algorithms,
different evolutionary operators had to be used between some of the different algorithms:

2.5.1 Tree GP

The tree genetic programming implementation uses the well-established ramped half-and-half algorithm to
generate individuals, which provides a combination of both full trees and smaller, more diverse trees. Subtree
mutation is used as a mutation operator by replacing a random subtree with a new subtree with depth equal
to a gaussian random value centered on the original subtree’s depth. The recombination operation used
simply replaces a random subtree on the parent with a random subtree on a donor tree.

2.5.2 Linear GP

The linear genetic programming implementation generates individuals as a random number of random nodes,
up to a maximum size. The mutation and recombination operators are designed in order to be similar to
the ones used in tree GP: the mutation operator replaces a random subsection of the program with another
one of a similar size to the original using a gaussian random offset, and the recombination operator selects
a random subsection of a donor and places it randomly into the parent, overwriting anything already using
that section and increasing the program length if necessary.

2.5.3 Cartesian GP

Cartesian genetic programming’s unique representation does not allow for a lot of variation in the design of
operators, so individuals are created by randomly selecting nodes to fill out the grid; mutation randomly
replaces nodes at a set rate, and recombination uses a uniform crossover.

2.5.4 Grammatical and Stack GP

Grammatical and stack genetic programming both store their representations in a list (a list of expansions
and a list of nodes respectively), so this implementation uses the same operations which are used for linear
GP, for consistency.

2.6 Experimental Parameters

Experimental parameters were chosen by hand after a small number of tests were performed for each of them.
The high computation time of meta-evolution unfortunately made a more exhaustive tuning of parameters
prohibitive.

The evaluation data set contained 3 problems, and the verification set contained 8, all of which were
3-SAT problems containing 2000 clauses of 500 variables. This problem size was chosen so that only the
highest-performing algorithms generated would get perfect fitnesses, in order to better distinguish the GP
types. In order to ensure more accurate results, the generated algorithms were tested on each problem 3
times.
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The meta-evolution for all GP types used a population size of 20 individuals, with future generations
selected by tournament selection with tournament size of 5. 70% of children were generated through recom-
bination, and 20% were generated through mutation. The remaining 10% was taken by truncation selection
from the previous generation to ensure a small amount of elitism. Runs were terminated after 40 generations,
which was generally enough to ensure convergence.

For the evaluation of individual algorithms generated by the hyper-heuristic, a maximum population size
was set at 100 solutions (overly large populations were truncated), though many algorithms used smaller
sizes. These were given 30 seconds of wall time to run on each evaluation. The reason for the use of wall time
rather than number of evaluations was because the number of evaluations per node did not correlate well
with the actual computational cost of executing those nodes. Thus, some nodes which were computationally
expensive but did not make heavy use of evaluations might be unfairly selected for if only evaluations were
limited.

Tree GP used a parsimony pressure of 0.1 per node, and a soft maximum size of 20 nodes. Individuals
which exceeded that maximum size were heavily penalized but otherwise treated normally. Fitnesses recorded
in the results section of this paper do not include these penalties. The initial population was generated to a
depth of 5.

Linear GP used 3 registers, one of which was designated as an output register. It used a parsimony
pressure of 0.1 per node and had a soft maximum size of 20 nodes. The initial population was generated
with 10 nodes.

Cartesian GP individuals had 20 layers of width 3, with the option to take input from nodes at most 5
layers higher. Due to the fixed maximum size of individuals, no penalties were used.

Grammatical GP used a grammar equivalent to what was allowed for tree GP. It used a parsimony
pressure of 0.1 per expansion and had a soft maximum size of 50 expansions. The initial population was
generated with 30 expansions. This approximately corresponds to an equivalent amount of nodes as was
given for the other variants, because the expansions also encoded parameters for the nodes.

Stack GP used a parsimony pressure of 0.1 per node and had a soft maximum size of 20 nodes. The
initial population was generated with 10 nodes.

3 Results

After running each genetic programming variant thirty times, the best individual from each run was evaluated
three times against the verification set. The resulting average fitnesses are shown in Table 1, with a score of
2000 indicating that the best algorithm found was able to repeatedly find satisfying solutions to all of the
verification problems after 30 seconds. These results were compared to their reported performances on the
evaluation data sets used in the course of genetic programming. While their performance on the evaluation
sets was somewhat inflated, as this was the value which they were selected for, the closeness of the algorithms’
performance on a set they were not bred to solve (usually within 10-20 fitness points) indicates that the
fitness results are indicative of general capability.

Statistical analysis of the data shows that tree and stack GP perform similarly to each other, as do linear
and Cartesian GP. However, there is a statistically significant difference between these two pairs, and with
grammatical GP. Thus, the choice of GP type can make a real difference in the performance of a hyper-
heuristic for the SAT problem. Tree and stack GP give the best results, followed by linear and Cartesian,
followed by grammatical.

4 Conclusions

Tree and stack GP performed very similarly to each other, which was not unexpected. This is because
stack GP generally functions as linearly stored postorder tree, and thus with the exception of stack GP’s
capacity to contain introns, have an identical search space. Many of the generated algorithms between the
two were very similar in shape. While the mapping is less exact, the graph-based representations of linear
and Cartesian GP also have similar search spaces and performed similarly as expected.

The differences between the tree and graph-based GPs’ search spaces appear to be largely responsible
for the performance disparity. None of the solutions generated by the hyper-heuristics make heavy use of
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Tree Linear Cart. Gram. Stack
1983 1891 1954 1824 1991
1990 1853 1994 1989 1980
1969 1990 1971 1949 1998
1997 1916 1964 1971 1977
1993 1907 1954 1824 1987
1992 1986 1989 1988 1988
1999 1958 1947 1936 1991
1991 1991 1991 1966 1930
1991 1992 1990 1823 1995
1975 1991 1990 1902 1999
1924 1979 1965 1999 1988
1997 1980 1988 1885 1999
1993 1990 1943 1833 2000
1999 1986 1995 1902 1993
1990 1985 1976 1812 1999
1990 1845 1924 1943 1986
1999 1958 1966 1986 1956
1994 1989 1993 1990 1996
1975 1989 1966 1990 1969
1993 1988 1981 1998 1979
1977 1932 1988 1993 1996
1991 1993 1990 1991 1963
1995 1985 1990 1853 1996
1999 1884 1976 1873 1991
1999 1988 1967 1987 1971
1997 1982 1963 1867 1982
1983 1990 1899 1962 1999
1992 1971 1988 1852 2000
1969 1993 1919 1963 1978
2000 1991 1961 1991 1989

Table 1: Average number of clauses satisfied by best individual generated per run, over the verification set
(out of 2000)

Tree Linear Cart. Gram. Stack Rand.
Eval. 1995.8(6.81) 1980.9(29.01) 1991.0(9.50) 1980.0(41.20) 1996.7(3.91) n/a
Veri. 1987.9(14.78) 1962.4(43.43) 1969.4(23.84) 1928.1(65.03) 1985.5(5.33) 1750.2(4.80)

Table 2: Average performances of algorithms on evaluation and verification sets (out of 2000), with standard
deviations in parentheses; Rand. indicates the average number of clauses satisfied by random SAT solutions

branching, with most solutions having zero or one union nodes. The solutions in the two graph GPs were
found to almost never re-use results, which negates one of their primary advantages over the tree-based
approaches. This leaves them with a more complex set of solutions to search through with nothing more
to show for it. The grammatical GP likely failed for a similar reason: the use of a grammar is intended
to allow the use of prior knowledge of the shape of solutions to constrain the search space. The use of a
generic grammar that does not constrain the search space then results in little benefit at the cost of a larger
genotype whose genes are less meaningful out of context.

These results apply specifically to the use of these GP types as hyper-heuristics for the SAT problem,
but the detection of significant differences between their performance has further-reaching implications. The
existence of problems for which the choice of GP matters indicates that users of hyper-heuristics need to
carefully select their GP type for the problem in order to get the best results.
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5 Future Work

The purpose of this study was to determine the relative performances of different GP types. However, the
SAT problem is a very well-studied problem and there are many conventional algorithms known to solve it
effectively [5]. It would be useful to use some of the existing algorithms to provide a benchmark performance
level in order to give context to the capacities of the different algorithms generated by the hyper-heuristics.

The SAT problem is a simple problem which is effective for testing hyper-heuristics on, but features of
it such as the low amount of branching that occurs in most solutions and the lack of any obvious and useful
grammatical constructions mean that not all of these variants are able to show their strengths. Testing these
against each other on a larger sampling of problems would give a better understanding of how these variants
perform in general, and might provide insight in how to match problems to the GP types best suited for
them.

Additionally, each of these GP types were tested in a fairly basic formulation. This was done deliberately
in order to ensure a more even comparison focused on the fundamental properties of each GP type. However,
there exist modifications and improvements to these core GP types which would likely be used in many real-
world applications and it would be useful to see how these affect GP performance to get results more
applicable to realistic scenarios.
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